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Abstract

An uncertainty quantification scheme is constructed based on generalized Polynomial Chaos (PC) representations.

Two such representations are considered, based on the orthogonal projection of uncertain data and solution variables

using either a Haar or a Legendre basis. Governing equations for the unknown coefficients in the resulting represen-

tations are derived using a Galerkin procedure and then integrated in order to determine the behavior of the stochastic

process. The schemes are applied to a model problem involving a simplified dynamical system and to the classical

problem of Rayleigh–B�enard instability. For situations involving random parameters close to a critical point, the

computational implementations show that the Wiener–Haar (WHa) representation provides more robust predictions

that those based on a Wiener–Legendre (WLe) decomposition. However, when the solution depends smoothly on the

random data, the WLe scheme exhibits superior convergence. Suggestions regarding future extensions are finally drawn

based on these experiences.
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O.P. Le Mâıtre et al. / Journal of Computational Physics 197 (2004) 28–57 29
1. Introduction

The development of uncertainty quantification (UQ) schemes has been the subject of much recent interest,
arising in large part due to the the increasing availability of large parallel computing platforms, the concurrent

evolution of advanced numerical methods and algorithms, and the the development of complex physical and

computational models. Uncertainty quantification can be instrumental in the development of these models,

e.g. for the purpose of validation or in support of decision making analysis. This paper is part of an effort that

explores the application of PC representations [1–8] to develop UQ methods for thermo-fluid problems.

Polynomial Chaos based methods have been extensively used for UQ in engineering problems of solid

and fluid mechanics (e.g. analysis of stochastic elastic structures [8,9], flow through porous media [10,11],

incompressible and zero-Mach-number flows [12–14], thermal problems [15,16], as well as combustion and
reacting flows [17–19]). One of the attractive features of the PC representation concerns the efficiency of the

resulting schemes, which can yield accurate predictions of the uncertainty at a small fraction of the cost of a

Monte-Carlo approach [13].

One of the drawbacks of spectral PC representations, however, concerns potential limitations in situa-

tions where complex solutions arise, or when the dependence of the solution on the random input data

varies rapidly. This limitation has been well known based on experiences with Wiener–Hermite (WHe)

representations. In particular, the analysis of Chorin [7] indicates that in complex problems involving shock

formation or an energy cascade, the WHe representation may cease to be practical.
In this paper we address a similar but different difficulty, arising in the case a random parameter in the

neighborhood of a critical point. We further restrict our attention to particular situations where the so-

lutions remain smooth and well behaved, but which can change dramatically, or even discontinuously,

according to specific values of the uncertain data. Such sensitivity of the solution with regard to the random

data can be viewed as a parameter shock or bifurcation. For reasons similar to those analyzed in [7], one

may expect that Wiener–Hermite or other spectral expansions to fail to adequately describe the steep (or

discontinuous) dependence of the solution on the random data. This study explores the possibility of

overcoming this difficulty by using a wavelet-based PC expansion. In doing so, the present approach
combines concepts of generalized PC expansions, originally introduced in [20–22], and of using of piecewise

functions in stochastic Galerkin methods [23]. In contrast to global basis functions, wavelet representations

naturally lead to localized decompositions which suggest the possibility of a more robust behavior albeit at

the expense of slower rate of convergence.

Being our first attempt in the use of wavelet-based PC expansions, we restrict our attention to the one of the

simplest families of wavelets, namely the Haar basis. In Section 2, the Wiener–Haar expansion of solutions

dependent on randomdata is introduced, and the salient features of the resulting PC representation are briefly

outlined. In Section 3, we first address a simple model problem consisting of a dynamical system having two
isolated, stable fixed points. Depending on specific realizations of the random initial conditions, the solution

converges to one stable fixed point or the other. Numerical simulations indicate that the WHa scheme can

effectively resolve the random process, but that a WLe expansion is unsuitable in this case. A more complex

situation is considered in Section 4, based on a stochastic version of the Rayleigh–B�enard problem. Specif-

ically, we consider two cases involving a random Rayleigh number, with the uncertainty range either con-

taining the critical point or lying entirely above the critical value. In both cases, the behavior of WHa and

WLe expansions is contrasted. Major findings and possible extensions are finally outlined in Section 5.
2. The Wiener–Haar expansion

In this section, we construct a WHa representation of a stochastic process. We start in Section 2.1 with

the decomposition of a one-dimensional probability space using Haar�s wavelets, and construct in Section
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2.2 the associated orthonormal decomposition of a random process. The construction is then generalized to

the multi-dimensional case in Section 2.3. Solution methods are given in Section 2.4, together with a brief

discussion of similarities and differences with spectral PC constructions [12,13].
2.1. Preliminaries

Let h be a random variable with given statistics. We denote by pðxÞ the probability that h < x, and
assume that pðxÞ is a continuous strictly increasing function of x defined on a real interval ða; bÞ, such that

�16 a < b61, pðaÞ � 0 and pðbÞ � 1. Although extension to the infinite case is possible, we shall

exclusively deal with the situation where a and b are finite. Using pðxÞ, the probability density function of x
on ða; bÞ is given by

pdfðxÞ � dpðxÞ
dx

> 0 8x 2 ða; bÞ;

pdfðxÞ � 0 8x 62 ða; bÞ:

Based on the assumed properties of pðxÞ, it follows that for all y 2 ½0; 1� there is a unique x 2 ½a; b� such that

pðxÞ ¼ y. Consequently, we define the one-to-one mapping

y 2 ½0; 1� ! x � p�1ðyÞ 2 ½a; b�: ð1Þ
2.1.1. Haar scaling functions

The scaling function of the Haar system, denoted by /wðyÞ, is given by [24–27]

/wðyÞ ¼ I½0;1ÞðyÞ ¼
1; 06 y < 1;
0; otherwise:

�
ð2Þ

Introducing the scaling factor j and the sliding factor k, we denote by

/w
j;kðyÞ ¼ 2j=2/wð2jy � kÞ; ð3Þ

the scaled Haar functions. Now, let fVjg1j¼0 be the sequence of function spaces defined by
Vj ¼ spanf/w

j;k; k 2 ½0; 2j � 1�g, and denote by P jf the projection of f onto the space Vj; we thus have

P jf ¼
X2j�1

k¼0

fj;k/
w
j;kðyÞ; ð4Þ

where the coefficients are given by

fj;k ¼
Z 1

0

f ðyÞ/w
j;kðyÞ dy: ð5Þ
2.1.2. Haar wavelets

The detail function gj�1 2 Vj is defined as the difference between two successive resolution levels, namely

gj�1 ¼ P jf � Pj�1f : ð6Þ

To obtain an expression of the detail function, we introduce the Haar function
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wwðyÞ � 1ffiffiffi
2

p /w
1;0ðyÞ �

1ffiffiffi
2

p /w
1;1ðyÞ ¼

1; 06 y < 1
2
;

�1; 1
2
6 y < 1;

0; otherwise:

8<
: ð7Þ

The Haar function is the mother wavelet that generates the wavelet family

ww
j;kðyÞ ¼ 2j=2wwð2jy � kÞ; j ¼ 0; 1; . . . ; and k ¼ 0; . . . ; 2j � 1: ð8Þ

From this definition we have

Z 1

0

ww
j;kðyÞ dy ¼ 0 and

Z 1

0

ww
j;kw

w
l;m dy ¼ djldkm: ð9Þ

Consequently, the set fww
j;k; j ¼ 0; 1; . . . ;1; k ¼ 1; . . . ; 2j � 1g is an orthonormal system, and any function

f 2 L2ð½0; 1�Þ can be arbitrarily well approximated by the sum of its mean and a finite linear combination of
the ww

j;kðyÞ.
In terms of wavelets, the detail function can be expressed as

gj�1ðyÞ ¼
X2j�1

k¼0

dj;kw
w
j�1;kðyÞ; ð10Þ

while P jf is given by

P jf ¼ P 0f þ
Xj�1

l¼0

X2l�1

k¼0

dl;kw
w
l;kðyÞ: ð11Þ
2.2. Wavelet approximation of a 1D random process

We now seek a wavelet representation of a second-order random process X ðnðhÞÞ, where n is a random
variable satisfying the assumptions of the previous section.

The notation nðhÞ is used to denote the stochastic nature of n. Specifically, we consider an expansion of

the form

X ðnðhÞÞ ¼ X0 þ
X1
j¼0

X2j�1

k¼0

Xw
j;kWj;kðnðhÞÞ; ð12Þ

where Xw
j;k are the coefficients of the wavelet approximation of X ðnÞ,

Wj;kðn 2 ½a; b�Þ � ww
j;kðpðnÞÞ; ð13Þ

and the equality is interpreted in mean-square sense. Eq. (12) can be rewritten as

X ðnðhÞ 2 ½a; b�Þ ¼ X0 þ
X1
j¼0

X2j�1

k¼0

Xw
j;kw

w
j;kðpðnÞÞ; ð14Þ

where X0 � P 0X ðnÞ. Moreover, the ortho-normality of the Haar wavelets ensures thatZ
½a;b�

Wj;kðnÞWl;mðnÞpdfðnÞ dn ¼
Z 1

0

ww
j;kðyÞw

w
l;mðyÞ dy � dj;ldk;m: ð15Þ
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This shows that the set of wavelets fWj;k; j ¼ 0; . . . ;1; k ¼ 0; . . . ; 2j � 1g forms an orthonormal system

with respect to the inner product

hf ; gi �
Z
½a;b�

f ðnÞgðnÞpdfðnÞ dn

and that hf i coincides with the mean or expectation. The wavelet set fWj;k; j ¼ 0; . . . ;1; k ¼ 0; . . . ; 2j � 1g
in fact forms a basis of the space of second-order processes, fX : hX ;X i < 1g [25,24].

Let us denote by r the set of index integers k concatenating the scale index j and the space index k:
r � fk : k ¼ 2j þ k; j ¼ 0; . . . ;1; k ¼ 0; . . . ; 2j � 1g. The resolution level will be denoted by jkj. Using

these conventions, the one-dimensional wavelet expansion of X ðhÞ can be expressed as

X ðnðhÞ 2 ½a; b�Þ ¼ X0 þ
X
k2r

XkWkðnðhÞÞ: ð16Þ

Moreover,

X0 �
Z 1

0

X ðp�1ðyÞÞ/w
0;0ðyÞ dy ¼

Z
½a;b�

X ðnÞpdfðnÞ dn ¼ hX ðnÞi ð17Þ

is the expected value of the process. Consequently, setting W0 � 1, and denoting r0 the extension of r to
include the index 0, the 1D wavelet expansion becomes

X ðnðhÞ 2 ½a; b�Þ ¼
X
k2r0

XkWkðnðhÞÞ; ð18Þ

where

Xk �
Z 1

0

X ðp�1ðyÞÞww
k ðyÞ dy ¼

Z
½a;b�

X ðnÞWkðnÞpdfðnÞ dn ¼ X ðnÞWkðnÞh i: ð19Þ

The expansion in Eq. (18) is the wavelet analogue of the generalized PC expansion used in stochastic

spectral methods.

2.3. Multi-dimensional process

In this section, we extend the WHa expansion to the multi-dimensional case, and focus for simplicity on

a vector n of independent random components fn1ðhÞ; . . . ; nN ðhÞg obeying

nih i ¼ 0; i ¼ 1; . . . ;N ; and ninj
� �

¼ n2i
� �

dij; 16 i; j6N :

We now consider the multi-dimensional index k ¼ ðk1; k2; . . . ; kNÞ, and define the sequence

Wn �
YN
k¼1

Wkk ðnkÞ :
XN
k¼1

kkj j
(

¼ n

)

to be the set of multi-dimensional wavelets having resolution n. The multi-dimensional wavelet expansion
of X ðnðhÞÞ can now be formally written as [1,8]
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X ðn1ðhÞ; . . . ; nN ðhÞÞ ¼ X0W0 þ
XN
i1¼1

ci1C1ðni1ðhÞÞ þ
XN
i1¼1

Xi1
i2¼1

ci1i2C2ðni1ðhÞ; ni2ðhÞÞ

þ
XN
i1¼1

Xi1
i2¼1

Xi2
i3¼1

ci1i2i3C3ðni1ðhÞ; ni2ðhÞni3ðhÞÞ þ � � � ; ð20Þ

where C0ðnÞ � 1, and Ck 2 Wk denotes a multi-dimensional wavelet of resolution k. In practice, the wavelet

expansion must be truncated, and different strategies may be used for this purpose. The most intuitive
approach is to retain wavelets of resolution n, i.e. we retain vectors k such that

PN
k¼1 jkkj6 n. In this case,

the multi-dimensional resolution level n plays a similar role as the order in Wiener–Hermite expansions

[1,8]. Another possibility is to use the ‘‘spherical truncation’’, e.g. by retaining vectors k satisfying

ð
PN

k¼1 jkkj
2Þ1=2 6 n.

Regardless of the truncation strategy, the truncated expansion may be conveniently rewritten as a single-

index summation, according to

X ðnÞ �
XNw

k¼0

Xw
k HakðnðhÞÞ; ð21Þ

where Nw þ 1 is the dimension of the truncated basis, fHak; k ¼ 0; . . . ;Nwg.
2.4. Comparison with spectral expansions

Similar to the WHe [1,8] and other spectral representations [20], the wavelet expansion (Eq. (21)) is an

orthonormal approximation of the stochastic process. This property may be immediately exploited to

extract the process expectation

hX i ¼ Xw
0 ;

and its variance

r2ðX Þ ¼
XNw

k¼1

Xw
k

� �2
:

Despite the formal similarities of the corresponding expansions, fundamental differences between wavelet

and spectral representations should be noted. In the latter case, global orthogonal polynomials are spe-

cifically selected so that, when appropriate smoothness conditions are satisfied, an ‘‘infinite-order’’ con-

vergence rate results. Such convergence rate is not expected for the WHa expansion, in which the basis

functions are localized. Specifically, the WHa expansion derived above can be viewed as an ‘‘orthogonal

sampling’’ or a local decomposition of the solution into piecewise constant processes. One may expect that
in situations where the response of the system shows a localized sharp variation or a discontinuous change,

the wavelet decomposition may be more efficient than a spectral expansion, whose convergence could

dramatically deteriorate due to Gibbs-type phenomena. Another distinctive feature of the WHa expansion

concerns products of piecewise constant processes. For instance, the product xy of two elements x and y of

Vj also belongs to the same space. In contrast, the product of two polynomials of degree less than or equal

to n does not necessarily belong to the space of polynomials having degree less than or equal to n. Thus, one
may also expect that for problems exhibiting steep dependence on the random data the WHa scheme is less

susceptible to aliasing errors than a spectral scheme. Below, we address these questions by considering
situations involving both smooth and discontinuous dependence on the random data, and contrast the

behavior of WHa and WLe expansions.
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3. Model problem

We first apply the WHa decomposition to a simple model problem that involves a discontinuous
dependence of the process on the random data. This provides a stringent test of the representation, as one

expects that a global spectral expansion would exhibit severe difficulties in capturing the behavior of the

stochastic process. To this end, results obtained using the WHa expansion are contrasted with predictions

based on a WLe representation.

3.1. Problem statement

Consider the following deterministic differential equation:

d2x
dt2

þ f
dx
dt

¼ � dh
dx

; ð22Þ

with parameters f > 0 and dh=dx. The problem requires two initial conditions: xðt ¼ 0Þ ¼ x0 and

vðt ¼ 0Þ � dx=dtðt ¼ 0Þ ¼ v0. The system can be interpreted as the governing equation for a particle moving

under the influence of a potential field and of a friction force. In the computations below, we set

hðxÞ ¼ ð35=8Þx4 � ð15=4Þx2 so that the differential equation has two stable fixed points (x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
15=35

p
), and

an unstable fixed point at x ¼ 0. The potential field hðxÞ and the function dh=dx are plotted in Fig. 1.

A stochastic variant of the above system is constructed by considering an uncertain initial position x0.
On the other hand, the particle is always released with a vanishing velocity. In the computations, we assume

that the initial position is uniformly distributed over the interval ½x1; x2�, i.e. pdfðx0 2 ½x1; x2�Þ ¼ 1=jx2 � x1j
and

R x2
x1
pdfðxÞ dx ¼ 1. The stochastic initial conditions can be expressed as

X ðt ¼ 0; nÞ ¼ X0 þ DXn;
dX
dt

����
t¼0

¼ 0;

where X ðt; nÞ denotes the response of the stochastic system, X0 � ðx1 þ x2Þ=2, DX ¼ jx1 � x2j=2, and n is

uniformly distributed over ½�1; 1� with pdfðnÞ ¼ 1=2. Thus, the stochastic system can be formulated as

d2X
dt2

þ f
dX
dt

¼ � 35

2
X 3 þ 15

2
X ; ð23Þ
X ðt ¼ 0; nÞ ¼ X0 þ DXn; ð24Þ
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

h(
x)

x

35x4 /8 - 15x2 / 4

-10

-5

0

5

10

15

-1 -0.5 0 0.5 1

dh
/d

x

x

35x3 /2 - 15x/2

Fig. 1. Profiles of hðxÞ and of dh=dx for the model problem of Section 3.
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dX
dt

����
t¼0

¼ 0: ð25Þ
3.1.1. Solution method

In this section, we outline the method used to integrate the stochastic formulation based on the WHa

representation. The solution method for the WLe representation is similar and is consequently omitted.

The truncated WHa expansion of the solution process is expressed as

X ðt; nðhÞÞ � ~X ðt; nÞ ¼
XNw

k¼0

Xw
k ðtÞHakðnÞ:

Governing equations for the wavelet coefficients Xw
k are derived in two steps. The truncated wavelet

expansion is first inserted into Eq. (23), and projections onto the wavelet basis are then performed. The

latter step is implemented by multiplying the expanded system by Hal and then forming the expectation.

This leads to a system of Nw þ 1 coupled ODEs for the coefficients

d2Xw
l

dt2
þ f

dXw
l

dt
¼ � 35

2
~X 3Hal

D E
þ 15

2
Xw
l ð26Þ

for l ¼ 0; . . . ;Nw. A similar Galerkin approach is used to derive initial conditions for the individual modes;

we get

Xw
0 ðt ¼ 0Þ ¼ X0; Xw

l ðt ¼ 0Þ ¼ DX nHalh i for l ¼ 1; . . . ;Nw; ð27Þ
dXw
l

dt

����
t¼0

¼ 0 for l ¼ 0; . . . ;Nw: ð28Þ

Eq. (26) can be easily integrated once the the cubic term, h~X 3Hali, is determined. Two approaches are
considered here, based on (i) a Galerkin approach, and (ii) a pseudo-spectral approximation. In order to

outline these approaches, we first introduce the ‘‘multiplication tensor’’,

Cijk � HaiHajHak
� �

and ‘‘the triple product tensor’’,

Tijkl � HaiHajHakHal
� �

:

One can readily [8,12,13] show that the Galerkin approximation of quadratic term X 2 is given by

ðX 2Þwk � ~X 2Hak
D E

¼
XNw

i¼0

XNw

j¼0

CijkXw
i X

w
j :

In the Galerkin approach, the cubic term is obtained through convolution involving the triple tensor,

specifically using the following triple sum:

ðX 2Þwl � ~X 3Hal
D E

¼
XNw

i¼0

XNw

j¼0

XNw

k¼0

TijklXw
i X

w
j X

w
k :

On the other hand, for the pseudo-spectral approach, the cubic term is approximated through repeated

application of the binary multiplication operator, according to
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ðX 3Þwk � ðX 3ÞHak
� �

¼ ðX ÞðX 2ÞHak
� �

’
XNw

i¼0

XNw

j¼0

CijkXw
i ðX 2Þwj :

The tensor Cijk (and when present Tijkl) is evaluated in a pre-processing step and then stored for later use in
the simulations. This evaluation, as well as several useful transformations, such as products and inverse

transformations, are implemented using a software library of routines which we call the UQ toolkit. This

library was initially developed for Wiener–Hermite representations [18,28], but was extended to include the

presently considered expansions. Note that, similar to the Hermite and Legendre systems, the multiplica-

tion tensor in the Haar system is sparse and can be evaluated exactly. Also note that in the case of the WHa

expansion, the pseudo-spectral approach coincides with the Galerkin estimate. This is the case because, as

previously noted, the product of elements of Vj also belongs to Vj. For the WLe and other polynomial

representations, on the other hand, repeated binary products introduce aliasing errors due to truncation at
the intermediate stages.

The time integration of Eq. (26) is performed using a fourth-order Runge–Kutta scheme. In all com-

putations described in this section, a small value of the time step was used, Dt ¼ 0:001. This value was

selected following a straightforward analysis in which the time step was systematically reduced until it had

negligible impact on the predictions.

Below, we compare solutions obtained using the WHa expansion, truncated to a given resolution level

Nr, with results obtained using both Galerkin and pseudo-spectral WLe expansions, truncated to order No.

Since we are dealing with a single stochastic dimension, the total number of basis functions in the WHa
expansion is equal to 2Nr ; in the case of WLe, it is equal to No þ 1.
3.2. Results

3.2.1. WLe scheme

The WLe scheme is applied to the model problem above, with stochastic initial conditions specified by

X0 ¼ 0:05 and DX ¼ 0:2. A relatively large value of the friction coefficient is selected, f ¼ 2, so that a steady

solution is achieved in a short time. For the present conditions, the analytical prediction of the steady state
is given by

X ðt ! 1; nÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
15=35

p
; n < �0:25;

X ðt ! 1; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
15=35

p
; n > �0:25;

�
:

which results in the following statistical moments, hX ðt ! 1; hÞi ¼ 0:163663 and rðt ! 1; hÞ >¼
0:633865691.

Figs. 2 and 3, respectively, depict the pseudo-spectral and Galerkin WLe solutions for different ex-

pansion orders. Plotted are the short-time evolution of X ðt; nÞ, the solution at t ¼ 10, and the corresponding

‘‘steady-state’’ pdf of X . The results indicate that, regardless of the order of the expansion, the WLe scheme

does not provide an adequate representation of the behavior of the system. Specifically, unphysical oscil-

lations in the distribution of X ðnÞ are observed, which are more pronounced in the pseudo-spectral com-

putations than in the Galerkin results. These oscillations are still present in the ‘‘large time’’ steady solution,

as shown in Fig. 4. Around the equilibrium points X ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
15=35

p
, the amplitude of the wiggles decreases

slightly as No increases, but their frequency increases. The manifestation of these wiggles is reminiscent of

the Gibbs phenomenon which occurs in spectral decompositions of discontinuous signals. The impact of

this phenomenon can also be appreciated in the predicted steady-state pdf of X , shown in the right column

of Figs. 2 and 3. For the present stochastic problem, the analytical pdf consists of two Dirac masses of

unequal strength, located at the stable equilibrium points X ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
15=35

p
. The WLe predictions differ

significantly from the analytical prediction; around the equilibrium points, they exhibit a broad spectrum



Fig. 2. Pseudo-spectral WLe solution for the model problem of Section 3.2.1. The left column shows the evolution of X ðt; nÞ for

06 t6 10. The solution X ðt ¼ 10Þ is plotted in the middle column and the steady-state pdf is shown in the right column. Results are

obtained for expansion orders No ¼ 3, 5, 7, 9 and 11, arranged from top to bottom.
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Fig. 3. Galerkin WLe solution for the model problem of Section 3.2.1. The left column shows the evolution of X ðt; nÞ for 06 t6 10.

The solution X ðt ¼ 10Þ is plotted in the middle column and the steady-state pdf is shown in the right column. Results are obtained for

expansion orders No ¼ 3, 5, 7, 9 and 11, arranged from top to bottom.
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Fig. 4. Steady solution X ðt ! 1Þ of the model problem of Section 3.2.1, obtained using WLe expansions with No ¼ 3, 5, 7, 9 and 11.

Plotted are curves obtained using a pseudo-spectral (left) and Galerkin (right) approximation.
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with multiple peaks. This is also characteristic of the application of a spectral representation to a dis-

continuous problem.

In addition to poor representation of the process pdf, in the present case the WLe scheme also fails to

provide accurate predictions of some of the low-order moments. To illustrate this claim, we provide in

Fig. 5 the WLe predictions of the mean and SD of X at steady state for No ¼ 3; . . . ; 31. The results
demonstrate that the mean response is poorly estimated for both the Galerkin and pseudo-spectral ap-

proximations, and that it fluctuates substantially with No. Better, though still inadequate, predictions of the

SD are obtained. Similar to the mean, these predictions also fluctuate with No.

3.2.2. WHa scheme

The WHa scheme is now applied to the same problem of Section 3.2.1. Results are obtained for an

increasing number Nr of resolution levels. Fig. 6 shows the evolution of X ðt; nÞ for 06 t6 10; results ob-

tained with Nr ¼ 2, 3, 4 and 5 are depicted. The results indicate that, so long as Nr > 2, the WHa scheme
correctly captures the bifurcation dividing the trajectories converging to the two stable equilibrium points.

The transition is first captured at Nr ¼ 3 and further increase of the value of Nr only affects the smoothness

of the solution during the initial transient. For Nr ¼ 2, the WHa scheme yields an incorrect result for

�0:56 n6 0, predicting in this range that the position rapidly equilibrates at X ¼ 0. This corresponds to a

physical but unstable equilibrium point. This erroneous prediction is obtained because the mean initial

position over the corresponding uncertainty range is zero. It is interesting to note that, although the pre-

diction for Nr ¼ 2 is incorrect for �0:56 n6 0, it is correct for the remaining parts of the uncertainty range.

Thus, errors incurred at specific values of the random data do not appear to pollute the entire predic-
tion; this (desirable) property of WHa schemes has been observed in a large number of (under-resolved)

computations.

The mean and SD of X at steady state are reported in Table 1 for all considered values of Nr. We observe

that for Nr P 3 the analytical prediction is exactly recovered. This complete agreement with the analytical

solution is due to the fact that the discontinuity, located at n ¼ �0:25, is ‘‘naturally’’ captured for Nr P 3; it

is specifically located at the edge of neighboring wavelets at the level j ¼ 3. Thus, the steady-state solution

has vanishing details for scales (or resolution indices) j > 3.

3.2.3. Highly discontinuous solution

The example above showed that in the case of a single point of discontinuity, the WHa decomposition

can provide an accurate representation of the stochastic process, but that the WLe scheme proved inad-

equate. To have a finer appreciation of the properties of the WHa scheme, we now consider a more difficult
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problem obtained simply by reducing the friction coefficient, f . Specifically, we set f ¼ 0:05 and focus on

stochastic initial conditions given by X0 ¼ 1 and DX ¼ 0:1. As in the previous case, the particle is released

from a state of rest, i.e. the initial velocity is deterministic and equal to 0.

The reduction of the friction coefficient, together with the higher initial energy of the system, results in a

complex response. Specifically, the particle oscillates for several cycles between the two potential wells,

before reaching a final equilibrium position. Furthermore, the inverse map between each of two stable
equilibrium points and the corresponding initial positions (which as previously mentioned is assumed to be

uniformly distributed between 0.9 and 1.1) results in a union of several disjoint intervals. Thus, the situation

is more complex than that of the previous problem, where two intervals were obtained. Consequently, one

anticipates that a significantly higher resolution level would be needed to correctly characterize the behavior

of the stochastic system.

To illustrate the convergence of the WHa scheme in the present case, results were obtained with a wider

range of resolution levels, 36Nr 6 8. Results are plotted in Fig. 7, which depicts X ðnÞ at t ¼ 100 for all

considered values of Nr. The results indicate that for the present conditions, six resolution levels are needed
to capture the response of the system, and particularly all the corresponding discontinuities. By increasing

the resolution level beyond Nr ¼ 6, one obtains additional details on the response of the system within the

regions of continuity, as well as a slight refinement of the locations of the discontinuities.

One also notes that, even when the resolution level is too low to correctly capture all of the disconti-

nuities, the WHa expansion still provides a meaningful prediction, in the sense that steady-state realizations



Fig. 6. WHa solution for the model problem of Section 3.2.2. The plots show the evolution of X ðt; nÞ for different resolution levels,

Nr ¼ 2, 3, 4 and 6.

Table 1

Mean and SD of X at steady state

Nr hX ðhÞi rðX ðhÞÞ

2 0.3273268 0.566946718

3 0.1636634 0.633865691

4 0.1636634 0.633865691

Results are obtained using the WHa scheme with different Nr. The analytical predictions are give by hX ðhÞi ¼ 0:1636634 and

rðX ðhÞÞ ¼ 0:633865691.
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do in fact correspond to a stable equilibrium point. In other words, resolution errors do not lead to an
unphysical prediction. This robustness of the WHa expansion is further illustrated in Fig. 8 which compares

the WHa solution using Nr ¼ 7 with the pseudo-spectral WLe prediction with No ¼ 32. The results are

generated at t ¼ 250, where a stationary state is nearly reached. The figure shows that the pseudo-spectral

WLe prediction is everywhere polluted by wiggles and yields predictions that are far from true equilibrium;

meanwhile, the Galerkin WLe scheme predicts a constant solution X ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
15=35

p
(not shown). With the

WHa scheme, on the other hand, the correct result is obtained. Naturally, the robustness of the WHa

predictions should be carefully exploited, so as to ensure that the process is adequately resolved and that

statistical moments are accurately computed. This can be achieved by systematic refinement of resolution
level, as performed in the example above.
4. Application to Rayleigh–B�enard Instability

In the previous section, a simple model problem was considered whose motion is governed by a simple

ODE. In this section, we address a more complex problem that consists of a stochastic Rayleigh–B�enard
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flow with random data in the neighborhood of the critical point. Specifically, we consider a closed rect-

angular 2D cavity of height H and length L that is filled with a Newtonian fluid. Gravity points downward,

and the bottom wall of the cavity is maintained at a hot temperature Thot while the top wall is maintained at
a cold temperature Tcold. The vertical thermal gradient can also be characterized in terms of the reference

temperature Tref � ðThot þ TcoldÞ=2, and the temperature difference DT � Thot � Tcold. The vertical walls are

assumed to be adiabatic.

4.1. Deterministic system

Assuming that the temperature is difference small, i.e. DT=Tref � 1, the Boussinesq approximation is

invoked. Thus, for deterministic conditions the flow is governed by the following system of normalized
equations [29,30]:

$ � u ¼ 0; ð29Þ
ou

ot
þ u � $u ¼ �$p þ Prffiffiffiffiffiffi

Ra
p $2uþ PrHy; ð30Þ
oH
ot

þ $ � ðuHÞ ¼ 1ffiffiffiffiffiffi
Ra

p $2H; ð31Þ

where u is the velocity, p is the pressure, t is the time, and H � ðT � TrefÞ=DT is the scaled temperature. The

system involves two dimensionless parameters, namely the Prandtl number Pr � lcp=j, and the Rayleigh
number Ra � ðqgbDTH 3Þ=ðljÞ. Here, l is the viscosity, cp is the heat capacity, j is the thermal conduc-

tivity, q is the density, g is the gravity, and b is the coefficient of thermal expansion.

Let X denote the computational domain, oX its boundary. We denote by oXc the cold wall, oXh the hot

wall, and oXv the vertical walls; we have oX ¼ oXh [ oXc [ oXv. Using this notation, the boundary con-

ditions are expressed as
uðx; tÞ ¼ 0 8x 2 oX; Hðx; tÞ � Hh ¼
1

2
8x 2 oXh; ð32Þ
Hðx; tÞ � Hc ¼ � 1

2
8x 2 oXc;

oHðx; tÞ
ox

¼ 0 8x 2 oXv: ð33Þ

The stability of the Rayleigh–B�enard problem summarized above has been extensively analyzed. In par-

ticular, results [31,32] reveal the existence of a critical value of Rac of the Rayleigh number, below which the

flow is stable. In this regime, the fluid velocity vanishes identically, and the temperature distribution ex-

hibits a linear variation vertically across the cavity, which is representative of a purely conductive system.
Above the critical value, the flow is unstable and the growth of the instability leads to the establishment of

recirculation zones, which results in enhanced heat transfer across the cavity.

Below, we address a stochastic variant of the Rayleigh–B�enard problem, focusing on the case of random

parameter which can result in either stable or unstable flow behavior. The presence of the bifurcation

provides a significant challenge to the computations. Below, we address this question by applying both the

WLe and WHa expansions to the case of cavity with aspect ratio A � L=H ¼ 2, filled with air (Pr ¼ 0:7),
under deterministic cold-wall temperature Tc but random hot-wall temperature Th. The statistics of Th are

assumed to be such that both stable and unstable behavior occur with finite probability.
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4.2. Stochastic formulation

As mentioned above, the hot-wall temperature is now considered to be random. We model the uncer-
tainty by decomposing Hh as HhðhÞ � HhðnðhÞÞ ¼ ð1=2Þ þHrnðhÞ. (In the stochastic case, the quantities DT
and Tref are defined using the mean hot-wall temperature, hThi.) Thus, Hr characterizes the random fluc-

tuations around the mean. The random variable n is assumed to be uniformly distributed on the interval

½�1; 1�.
Similar to the approach of the previous section, both the WLe and WHa expansions are implemented.

Thus, in the former case the solution is represented in terms of Legendre polynomials Lek, and in the latter

in terms of Haar wavelets, Hak. We shall derive the governing equations in terms of a generic basis

Wk; k ¼ 0; . . . ; P , where P þ 1 is the dimension of the basis and Wk denotes either Lek or Hak. Using this
notation, the uncertain velocity, pressure and temperature fields are expanded as

uðx; t; nÞ ¼
XP
k¼0

WkðnÞukðx; tÞ; ð34Þ
pðx; t; nÞ ¼
XP
k¼0

WkðnÞpkðx; tÞ; ð35Þ
Hðx; t; nÞ ¼
XP
k¼0

WkðnÞHkðx; tÞ: ð36Þ

Governing equations for the unknown coefficients are obtained by introducing these expansions into the

governing equations, multiplying the result by Wi and evaluating the expectation. Exploiting the orthog-

onality of the basis, we obtain the following coupled system [12,13]:

$ � ui ¼ 0; ð37Þ
oui
ot

þ
XP
j¼0

Xl

k¼0

Mijkuj � $uk ¼ �$pi þ
Prffiffiffiffiffiffi
Ra

p $2ui þ PrHiy; ð38Þ
oHi

ot
þ
XP
j¼0

Xl

k¼0

Mijk$ � ðujHkÞ ¼
1ffiffiffiffiffiffi
Ra

p $2Hi ð39Þ

for i ¼ 0; . . . ; P . Here, M is the multiplication tensor, given by

Milm ¼ Miml �
WiWjWk

� �
WiWih i :

Velocity boundary conditions on oX are ui ¼ 0 for i ¼ 0; . . . ; P . For the scaled temperature, we have

H0 ¼ � 1

2
; Hi¼1;...;P ¼ 0 8x 2 oXc; ð40Þ
Hi ¼
HhðnÞWiðnÞÞh i

WiWih i for i ¼ 0; . . . ; P 8x 2 oXh; ð41Þ
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oHi

ox
¼ 0 for i ¼ 0; . . . ; P 8x 2 oXv: ð42Þ
4.2.1. Numerical method and baseline results

The governing equations (37)–(39) are integrated using the stochastic projection method (SPM) de-

scribed in [13]. The method relies on a second-order, conservative, finite-difference discretization of field

variables. Velocities are discretized on cell edges, while pressure and temperature are discretized at cell

centers. Velocity divergence constraints are efficiently implemented using a pressure correction step, which

involves the solution of a system of decoupled pressure Poisson equations [12]. The present construction

generalizes the scheme developed in [13], primarily by incorporation an extended formulation that adapts
the multiplication tensor to the selected basis function expansion.

Prior to performing stochastic simulations, deterministic computations were performed (simply by

setting P ¼ 0). We set Ra ¼ 2150, i.e. the Rayleigh number is slightly larger than critical. The simulations

were then performed by perturbing the hot-wall temperature so as to determine the critical conditions for

the instability. In these computations, the initial condition consists of the purely conductive solution, which

is perturbed using a low-energy white-noise perturbation. As illustrated in Fig. 9, after a short time the

kinetic energy exhibits an exponential growth or decay, depending on the (perturbed) value of the hot-wall

temperature. The critical temperature is determined by computing the growth rate for different values of
Hh, as shown in Fig. 9. The curve is then interpolated in order to locate the value where the growth rate

vanishes. The results indicate that, for the present parameters, a critical value ~Hh ¼ 0:4301 is obtained.

Consequently, for the presently selected conditions, the overall heat transfer corresponds to the purely

conductive solution whenever Hh 6
~Hh. The rate of heat transfer is characterized using the Nusselt number:

Nu � 1

AðHh �HcÞ

Z A

0

oH
oy

����
y¼0

dx:

Clearly, in the stable (conductive) regime, Nu ¼ 1. For Hh > ~Hh, heat transfer enhancement occurs so

that NuðHhÞ > 1. Thus, the difference dNuðHhÞ � NuðHhÞ � 1 provides a measure of the heat transfer en-

hancement.
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4.3. WLe expansion

In this section, we apply the WLe scheme to simulate the response of the stochastic flow. As mentioned
earlier, we focus on the case of uncertain hot-wall temperature, which is assumed to be uniformly dis-

tributed in the range ½0:3; 0:5�. Following the discussion above, both a stable and an unstable flow behavior

occur for this uncertainty range.

Fig. 10 shows kinetic energy as a function of Hh for different values of No. The curves are reconstructed

from the steady-state WLe coefficients. The results indicate that the curves approach each other as No

increases, which suggests that the WLe computations are converging. Unfortunately, individual realizations

obtained for Hh < ~Hh do not exhibit a vanishing kinetic energy, as one would expect based on the stability

considerations above. In other words, if the WLe computations are in fact converging, they do not appear
to be converging to the exact solution.
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Fig. 10. Steady-state kinetic energy versus hot-wall temperature using WLe expansions with No ¼ 3, 5, 7, 9, 11 and 13. The right plot

shows a detailed view in the neighborhood of the critical value.
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In order to gain additional insight into the behavior of WLe predictions, we plot in Fig. 11 curves for

dNu as function of HhðnÞ. As before; results are generated for different expansion orders, No. As for the

kinetic energy, the observed behavior of dNu appears to converge with increasing No, but not to the exact
solution. Furthermore, at low values of Hh, an unphysical effect, corresponding to negative values of dNu,
can be observed. Specifically, the negative values of dNu indicate that, for the corresponding realizations, an
overall heat transfer rate is predicted that is smaller than that of the conductive solution! This unphysical

response occurs over a substantial band of possible realizations, which extends over about 25% of the entire

range of possible realizations. The origin of the unphysical response is further analyzed in Fig. 12, which

shows the steady-state velocity and temperature fields (reconstructed from the WLe expansion) for selected

values of Hh. In particular, the figure shows that for sub-critical values of Hh, instead of vanishing, the

predicted velocity exhibits a recirculating flow pattern with a reverse sign. Thus, the ‘‘energy leakage’’ that
was earlier observed in Fig. 10 for small Hh is accompanied by a severe breakdown of the WLe prediction.

Fig. 13 shows the pdf of dNu for WLe expansion with No ¼ 3, 5, 7 and 9. The results illustrate the

difficulties of the computations in approaching the exact solution, which should exhibit a singular spike at

dNu ¼ 0. Another symptom of the inefficiency of the WLe expansion for the present problem is the loss of
Fig. 12. Individual realizations of the steady-state temperature and velocity distributions, as predicted using a WLe expansion with

No ¼ 9. The selected values of Hh are indicated. Due to symmetry with respect to the mid vertical plane, only the left half of the cavity

is plotted.
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spectral convergence. This can be appreciated from Table 2, which provides the mean values of overall heat
transfer rate, h

RA

0
oH=oy dxi, and of the corresponding SD for different No.

The present experiences indicate that for problems involving bifurcations or loss of smoothness with

respect to the random data, the WLe expansion may be essentially impractical. Similar limitations are

expected for other spectral representations [20] based on global basis functions.

4.4. WHa expansion

In this section, we apply the WHa scheme to compute the stochastic, steady-state response of the
Rayleigh–B�enard flow. We use the same parameters as in the previous section, i.e. we focus on the case of

uncertain hot-wall temperature. We start by examining global properties of the flow field, and then analyze

stochastic velocity and temperature distributions.

4.4.1. Kinetic energy and heat transfer

Fig. 14 provides curves of the kinetic energy and dNu plotted against Hh. The curves are reconstructed

based on the wavelet coefficients, and results are shown for expansion using Nr ¼ 2, 3, 4 and 5. As far as

these integral measures are concerned, the results indicate that the WHa scheme is much better adapted
than the WLe scheme at capturing the transition between conductive and convective regimes, even when a

coarse stochastic discretization with Nr ¼ 2 is considered. As Nr increases, the computations provide an

increasingly accurate estimate of the location of the critical point, as illustrated in Fig. 15. The latter

provides an enlarged view of the local behavior of dNuðHÞ near the critical point, as well as the dependence
of dNu on n. In the latter format, the results illustrate the piecewise constant nature of the WHa expansion,

as well as the essential concept of the approximation scheme which relies on projecting the solution onto the
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Fig. 14. Kinetic energy (left) and dNuðHhÞ (right) versus hot-wall temperature using WHa expansions with Nr ¼ 2, 3, 4 and 5.
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space V Nr . The robustness of the WHa expansion in capturing the bifurcation can be appreciated by noting

that the reconstructed curves capture the correct behavior on both sides of the critical point. Specifically, as

predicted by the theory and confirmed by the perturbation analysis above, vanishing values of the kinetic

energy and of dNu are predicted for subcritical values of Hh, while for supercritical values, an essentially

linear increase of dNu with Hh is observed.
To gain further appreciation of the robustness of the WHa scheme, Table 3 provides the mean values of

the overall heat transfer rate, h
RA

0
oH=oy dxi, and of the corresponding SD for different Nr. The results

indicate that the predictions are close to one another and tend to cluster as Nr increases.
Table 3

Mean and SD of the overall heat transfer rate across the cavity

Nr h
RA

0
oH=oy dxi SD

1 2.22300 0.4230

2 2.23588 0.4524

3 2.23791 0.4627

4 2.23795 0.4653

5 2.23906 0.4652

Shown are results obtained using the WHa expansion with different resolution levels, Nr.
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Fig. 16. Mean velocity field (P 0u, left) and first wavelet modes, uj;k using a WHa expansion with Nr ¼ 5. The scale indices, j, are
indicated. At each scale index, frames for different space indices k ¼ 0; . . . ; 2 j�1 � 1 are plotted, and are arranged from bottom to top.

The magnitude of the vector is normalized using a factor equal to 2jþ1. Due to symmetry with respect to the mid vertical plane, only the

left half of the cavity is plotted.
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4.4.2. Detail distributions of velocity and temperature

Fig. 16 shows the computed velocity fields corresponding to the detail coefficients. Recall that for the

present 1D WHa expansion, the velocity is expressed in terms of the details uj;k according to

uðx; nÞ ¼
X2Nr�1

k¼0

ukðxÞHakðnÞ � u0 þ
XNr

j¼1

X2j�1�1

k¼0

uj;kw
w
j;kðpðnÞÞ:

In the left column of Fig. 16, we show the mean field u0ðxÞ � hui; in the second column, the detail corre-

sponding to the difference of the mean with P 1u. As expected, the latter indicates that the circulation inside
the cavity increases with n, and accordingly with Hh. The second detail fields, which are plotted in the third

column, correspond to differences between P 2u and P 1u; they reveal a similar recirculating pattern as the first

detail and point to a similar trend. More interesting trends can be observed from the detail fields at the next

level, j ¼ 3. Specifically, while the details corresponding to the highest values of Hh (appearing on top)

exhibit similar patterns and trends as those for j ¼ 2 and j ¼ 1, those corresponding to the low values have

different structure. Specifically, for k ¼ 0, the field vanishes, indicating that no correction is needed for the

corresponding ‘‘realizations’’. Furthermore, the detail for k ¼ 1 has larger magnitude than the other details

at the same level; this increased ‘‘activity’’ coincides with the location of the transition between conductive
and convective regimes. On the next detail level, we again observe that no corrections are needed for the

velocity fields at the lowest two temperature bands, whereas the corrections corresponding to the remaining

fields reflect a trend of increasing circulation with higher temperatures. Similar trends can be observed by

inspections of the details at the last level (j ¼ 5), which are shown in Fig. 17.

The stochastic temperature field is analyzed following the same approach used for the velocity. In

Fig. 18, we plot distributions of the mean velocity as well as the details for levels j ¼ 1, 2, 3 and 4; details

at the highest level, j ¼ 5, are plotted in Fig. 19. Note that, unlike the velocity field, the detail distri-

butions for temperature do not vanish, even at the highest resolution level. This is the case because in-
homogeneous boundary conditions prevail at the hot wall, regardless of whether the flow is stable or not.

Nonetheless, the transition from a conductive to a convective regime can still be detected. In the former

case, the distributions are characterized by parallel horizontal contour lines while severe distortions of this

pattern occur as the flow transitions. As for the velocity field, the results indicate that the transition is first

captured at j ¼ 3; at this level, the detail corresponding to k ¼ 0 exhibits flat horizontal contours, while

the detail temperature fields for k > 0 exhibit a distorted pattern that is characteristic of a recirculating

flow field. It is interesting to note that at higher levels (Figs. 18 and 19), the detail distributions corre-

sponding to supercritical temperature values exhibit a similar spatial distribution. This suggests that in
this situation the higher levels primarily introduce an amplitude correction to the prevailing recirculating

flow.

4.5. Continuous problem

The results of the previous sections demonstrate that the WHa expansion provides a robust and well-

suited approach for analyzing stochastic processes involving bifurcations or discontinuous dependence on

the random data. On the other hand, when the process depends smoothly on the random data, global
spectral expansions are expected to be substantially more efficient than wavelet representations [21]. Spe-

cifically, for spectral representations a fast, ‘‘infinite-order’’ convergence is expected, while for the Haar

representation errors are expected to decay as the inverse of Nr.

We briefly illustrate the convergence of the WHa and WLe schemes for a problem involving a smooth

dependence on the random data. To this end, we consider once again the same stochastic Rayleigh–B�enard
problem, but increase the Rayleigh number to Ra ¼ 3000. For this value of the Rayleigh number, the

convective regime always prevails as all possible realizations of Hh are larger than the critical value.



Fig. 17. Wavelet modes for the velocity field at a scale index j ¼ 5. The magnitude of the vector is normalized using a factor equal to

2jþ1. Results are obtained using a WHa expansion with Nr ¼ 5. The space index k is indicated, and only the left half of the cavity is

plotted.
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Table 4 shows predictions of the mean overall heat transfer and of the corresponding SD, using the

WHa scheme with increasing Nr and the WLe scheme with increasing No. The results indicate that the

WLe predictions rapidly become independent of No; in particular, identical predictions of the mean heat

transfer and its SD are obtained with No ¼ 4 and 5. The WHa predictions also appear to be converging

as Nr increases, though at an appreciably smaller rate. To gain additional insight into the convergence

of both predictions, we plot in Fig. 20 an approximate error estimate, defined as the absolute value of

the difference between a given prediction and the WLe result with No ¼ 5. Thus, in these estimates, the



Fig. 18. Mean temperature field (P 0H, left) and first wavelet modes, Hj;k using a WHa expansion with Nr ¼ 5. The scale indices, j, are
indicated. At each scale index, frames for different space indices k ¼ 0; . . . ; 2j�1 � 1 are plotted, and are arranged from bottom to top.

Due to symmetry with respect to the mid vertical plane, only the left half of the cavity is plotted.
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Fig. 19. Wavelet modes for the temperature field at a scale index j ¼ 5. Results are obtained using a WHa expansion with Nr ¼ 5. The

space index k is indicated, and only the left half of the cavity is plotted.
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fifth-order WLe solution is used as surrogate for the exact solution. The results of Fig. 20 illustrate the

fast decay of the error for the WLe scheme. For the WHa scheme, the error also decays with increasing

Nr, though at an appreciably smaller rate. The moderate rate of convergence of the WHa computations
can also be appreciated in Fig. 21, which depicts the computed distributions of dNu for different values

of Nr. The results illustrate the ‘‘staircase’’ Haar approximation of the continuous curve expressing the

dependence of dNu on Hh and on n. Thus, for the present conditions, the WLe scheme outperforms the

WHa scheme.
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Fig. 20. Convergence of the expected (left) and SD (right) of Nu with increasing No for the WLe expansion and Nr for the WHa

expansion. The errors is estimated using the absolute value of the difference between the solution and the WLe prediction with No ¼ 5.

Table 4

Mean and SD of the overall heat transfer rate across the cavity

h
RA

0
oH=oy dxi SD

Nr

1 2.92239879 0.49257723

2 2.92350067 0.55054599

3 2.92377786 0.56409585

4 2.92384732 0.56743188

5 2.92386463 0.56826288

6 2.92386897 0.56847041

No

1 2.92384455 0.56871803

2 2.92387023 0.56854003

3 2.92387042 0.56853954

4 2.92387042 0.56853957

5 2.92387042 0.56853957

Shown are results obtained using the WHa expansion with different resolution levels, Nr, and the WLe scheme with different values

of No. The Rayleigh number Ra ¼ 3000, and unstable conditions prevail for all possible realizations of the hot-wall temperature.
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5. Conclusions

In this paper, an uncertainty propagation scheme is constructed based on generalized PC representa-
tions. The scheme relies on an orthogonal representation of the dependence of the solution on random

parameters. A spectral representation in terms of Legendre basis functions is considered, as well as an

orthogonal decomposition using Haar wavelets. In both cases, the unknown coefficients in the expansion

are evaluated using a Galerkin procedure, which results in coupled evolution equations for the stochastic

modes. The behavior of the resulting schemes is analyzed in light of computations of a simple dynamical

system, and of simulations of near-critical Rayleigh–B�enard flow. In both cases, attention is focused on the

case of a steep or discontinuous dependence of the stochastic process on the random input data.

The model computations focused on the idealized case of a particle moving under the action of an
imposed potential and friction. Randomness is introduced in the form of a stochastic initial position, with

uniform probability between two specified bounds. Depending on the value of the friction coefficient, the

random process admits single or multiple discontinuities. When a single discontinuity occurs, the steady

behavior of the problem was characterized analytically, and the analytical solution is used to verify

computed predictions. The results indicate that the WHa scheme is well adapted to the present situation,

and that the steady-state analytical predictions are recovered when sufficient resolution is provided. In

contrast, computations performed using a WLe expansion provided poor estimates of both low-order

statistics and of individual realizations. The robust behavior of the WHa scheme was also verified in sit-
uations where the stochastic system admits multiple discontinuities with respect to the random data. As in

the previous case, the results indicate that, with sufficient resolution, accurate estimates of the statistics and

of individual realizations are obtained.

Simulations were then performed of near-critical Rayleigh–B�enard flow. These computations were based

on an extended version of the SPM constructed in [13]. Attention was focused on the case of uncertain hot-

wall temperature, selected so that both stable and unstable behavior are likely to occur. Similar to earlier

experiences with the model dynamical system, the simulations indicate that the WHa scheme effectively

captures the transition, as well as the statistics of the stochastic process. In contrast, the WLe expansion
suffered from several limitations, including poor prediction of transition and of the state of the system,

especially in the case of stable realizations. The WHa and WLe schemes were also applied in situations

involving smooth dependence on the random data, which were selected such that recirculating flow is es-

tablished for all realizations. In this situation, both schemes performed in a satisfactory fashion with the

WLe scheme exhibited a superior rate of convergence.

The present experiences point to a number of interesting extensions of the present approach, including

hybrid formulations combining wavelets and spectral expansions, and adaptive wavelet formulations.

These extensions, as well as generalizations to multiple stochastic dimensions, are currently being explored.
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[14] O.P. Le Mâıtre, M.T. Reagan, B. Debusschere, H.N. Najm, R.G. Ghanem, O.M. Knio, Natural convection in a closed cavity

under stochastic, non-Boussinesq conditions, SIAM J. Sci. Comput. (submitted).

[15] T. Hien, M. Kleiber, Stochastic finite element modelling in linear transient heat transfer, Comput. Methods Appl. Mech. Eng. 144

(1997) 111–124.
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